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SUMMARY 

We explore the concept of effective hydraulic conductivity for a bounded randomly 
heterogeneous formation under steady-state flow regime.  The novelty of our study consists of 
establishing a tensorial nature of the effective conductivity.  This occurs even for locally 
isotropic conductivity fields.  Neuman and Orr [1] have demonstrated that stochastically 
averaged flow equations are non-local and non-Darcian, so that effective hydraulic 
conductivity does not generally exist.  We derived our analytical expression for the effective 
conductivity tensor by localizing these equations, and assessed the accuracy of this 
approximation by comparing the resulting hydraulic heads and fluxes with their non-local 
counterparts.  Our solutions are in a good agreement with both recursive non-local finite-
elements results of Guadagnini and Neuman [3] and Monte Carlo simulations for mildly and 
strongly heterogeneous formations. 

1. INTRODUCTION AND PROBLEM STATEMENT 

Consider steady-state groundwater flow described by a combination of Darcy’s law and 
conservation of mass 
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subject to the boundary conditions  
 
h(x) = H(x), x ∈ ΓD; −q(x) ⋅ n(x) = Q(x); x ∈ ΓN (2) 
 
Here q(x) is the Darcy’s flux, K(x) is the hydraulic conductivity, h(x) is the hydraulic head, f(x) 
is the source term, H(x) is the prescribed head on Dirichlet boundary segments ΓD, Q(x) is the 
prescribed flux across Neumann boundary segments ΓN, and n(x) is the unit outward normal to 
the boundary Γ = ΓD ∪ ΓN of the flow domain Ω.  All quantities are representative of a nonzero 
support volume ω << Ω centered about x, which is sufficiently large for Darcy’s law to be 
locally valid.  We treat hydraulic conductivity, K(x), as a random field, so that (1) − (2) 
constitute a system of stochastic partial-differential equations.   
 



Neuman and Orr [1] and Tartakovsky and Neuman [2] have developed conditional moment 
equations for groundwater flow in randomly heterogeneous formations under steady-state and 
transient conditions, respectively.  Guadagnini and Neuman [3, 4] have solved the steady-state 
moment equations numerically by relying on recursive approximations of Tartakovsky and 
Neuman [2].  In their analyses, the unbiased flux estimator is obtained by taking the ensemble 
mean of Darcy’s law  (1), 
 
<q(x)> = − <K(x)> ∇ <h(x)> + r(x).  
 
Here r(x) is the so-called “residual” flux, whose exact form is given in [1, 2].  For practical 
evaluation of this term it has been found necessary to employ perturbation analysis in a small 
parameter σ2, the variance of a statistically homogeneous random field of (natural) log 
hydraulic conductivity Y(x) = ln K(x).  This leads to perturbation expansions of the mean 
hydraulic head and flux, <h(x)> = <h(0)(x)> + <h(1)(x)> + O(σ4) and <q(x)> = <q(0)(x)> + 
<q(1)(x)> + O(σ4).  Retaining the first two terms in these expansions gives the first-order 
approximation of the mean Darcy’s law [2 - 4], 
  
<q[1](x)> = <q(0)(x)> + <q(1)(x)>  
 
where 
 
<q(0)(x)> = − KG ∇h(0)(x); <q(1)(x)> = − KG [∇h(1)(x) + (σ2/2) ∇h(0)(x)] + r(1)(x). 
 
Here KG = exp<Y> is the geometric mean of Y, the zeroth-order mean head h(0) satisfies (1) – 
(2) where K(x) is replaced by KG, and the first-order approximation of the residual flux r(1)(x) 
is given by 
 

∫
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 (3) 
where 
 
a(y, x) = 2

GK  CY(y, x) ∇x ∇y
T  G(y, x),  

 
CY(y, x) is the spatial autocovariance of Y, and G is the deterministic Green’s function for (1) – 
(2) where K(x) is replaced by KG.  For the expansions of the mean hydraulic head and fluxes to 
remain asymptotic it is necessary that σ2 << 1, i.e. the porous medium to be mildly 
heterogeneous.  Nevertheless, numerical simulations of Guadagnini and Neuman [3, 4] have 
demonstrated that our first-order approximations yield remarkably accurate results for strongly 
non-uniform media with σ2 as large as 4. 
 
Since flux estimators r(x) and <q(x)> are generally nonlocal and non-Darcian, the notion of 
effective conductivity looses its meaning in all but a few special cases [1, 2, 5, 6].  Tartakovsky 
and Neuman [5, 6] have explored a few special situations where localization of the above flux 
predictors is possible and have analyzed the corresponding effective conductivity.  Among this 
flow scenarios the case of the slow-varying mean head gradient has been studied most.  Under 
this assumption, one can approximate (3) as 
 



r(1)(x) ≈ κ(1)(x) ∇h(0)  (4) 
 
where 

κ(1)(x) = ∫
Ω

∇∇ yxyxy dGCK yxYG ),(),( T2 . (5) 

 
Then 
 
<q[1](x)> ≈ − KG ∇<h(1)(x)> − ]1[

effK  ∇h(0)(x);  ]1[
effK  =  KG [1 + (σ2/2)] I −  κ(1)(x) (6) 

 
Guadagnini and Neuman [3, 4] have shown that a localized version of the mean flow equations 
provides quite accurate estimates of hydraulic heads and fluxes when compared to Monte Carlo 
results. 
 
For flow through infinite, statistically homogeneous porous media under mean uniform flow 
conditions, the mean hydraulic head gradient J = ∇h(0), and ∇h(i) = 0 for i > 0 [1].  Then 
<q[1](x)> ≈ − ]1[

effK  J, with ]1[
effK  playing the role of a bona fide effective hydraulic conductivity. 

However, Guadagnini and Neuman [3, 4] showed that for bounded domains ∇<h(1)(x)> ≠ 0 
even when ∇h(0) is constant.  Thus, the localization of the second order mean flow equation in 
the manner of (4) – (6) does not imply that <q[1](x)> is Darcian.  
 
Guadagnini and Neuman [3, 4] have demonstrated numerically that ∇<h(1)(x)> << ∇h(0)(x) at 
locations far away from singularities (e.g. pumping/injection wells).  Then one can write 
<q[1](x)> ≈ − ]1[

effK  ∇h(0)(x).  Tartakovsky and Neuman [5] have considered mean uniform flow 

through a box-shaped domain and evaluated numerically the component of ]1[
effK  in the 

direction of the mean flow.  Here we explore analytically the tensorial nature of the effective 
parameter in (6) for a two-dimensional case. 
 
2. EFFECTIVE CONDUCTIVITY FOR A RECTANGLE 

Here we present an analytical expression for effective hydraulic conductivity tensor under two-
dimensional steady-state flow through a rectangle due to a uniform mean hydraulic gradient.  
The rectangle is embedded within a statistically homogeneous field Y that is Gaussian and 
exhibits an isotropic separated exponential auto-correlation structure.  The sides of the 
rectangle are a and b in x1 and x2 directions, respectively.  In dimensionless coordinates 

*
1x  = x1/a, and *

2x  = x2/b, boundary conditions are taken as 

 
h = H1;  for *

1x = 0;  h = H2;  for *
1x = 1;  

 
∂ h(x) / ∂ *

2x = 0;  for *
2x = 0 and *

2x = 1.  
 
Here H1 and H2 are deterministically prescribed hydraulic heads.  Upon introducing ε = b / a, 
and dimensionless variables ayy /1

*
1 = , byy /2

*
2 = , the auto-covariance function is written as 
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where λ* = λ / a, and λ is the correlation scale.  The Green’s function, GK = KG G, is now 
given by 
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Figure 1.  Contour maps of the components κij (x*) normalized by KG σ2: (a) κ11, (b) κ12, (c) 
κ21, and (d) κ22.  The parameters are ε = 1 and λ* = 0.5. 
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Substituting (7) and (8) into (5) leads to the expressions for the four components κij of the 
tensor κ(1).  The analytical expression for κ11 is given below (the superscript * is omitted), 
while Figure 1 depicts contour plots of all κij, evaluated for ε = 1 and λ* = 0.5. 
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It is clear from Figure 1 that all four components of the second-rank tensor κ(1) are space-
dependent and are symmetric with respect to the domain center.  The tensor κ(1) is non-
symmetric and diagonally-dominant almost everywhere, with non-diagonal terms κij = 0  (i ≠ j) 
at the domain center.  Hence, the first-order approximation of the stochastically derived 
effective conductivity tensor is generally non-symmetric.   
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Figure 2. Longitudinal section (at *

2x  = 0.5) of κ11/ KG σ2 for ε = 1 and several values of λ*. 
 
The boundary effects are revealed on Figure 2 which depicts the longitudinal cross-section (at 

*
2x  = 0.5) of κ11 / KG σ2 for ε = 1 and several values of λ*.  As the domain size increases (λ* 

decreases), κ11 / KG σ2 → 0.5.  This is in agreement with well-established results for infinite 
domain [1].  Indeed, it follows from (16) that ]1[

11,effK → KG as λ*/a→0.  Although not shown 

 



here, κ12 = κ21 = 0 and κ22 / KG σ2 = 0.5 at every point in the domain, as λ*/a→0.  Thus 
anisotropy of the effective conductivity stems from the presence of boundaries.  These 
boundary effects also cause the effective conductivity tensor to be non-symmetric.  
 
3. CONCLUSIONS 
 
Our work leads to the following major conclusions: 
 
1. Stochastically averaged flux is generally non-local and non-Darcian, so that an effective 

hydraulic conductivity cannot be defined except in special cases.  To derive an analytical 
expression for the effective conductivity, we adopted a first-order (in variance σ2 of log 
hydraulic conductivity Y) perturbation analysis and localization of the mean flow equation. 

2. First-order approximation, ]1[
effK , of the effective conductivity tensor for two-dimensional 

steady-state flow through a rectangle due to a uniform mean hydraulic gradient is generally 
non-symmetric and diagonally-dominant.  

3. Anisotropy of the effective conductivity stems from the presence of boundaries.  These 
boundary effects also cause the effective conductivity tensor to be non-symmetric.  As the 
domain size, expressed in terms of correlation lengths of Y, increases, the diagonal terms of 

]1[
effK  tend to the geometric mean of hydraulic conductivity; its cross-diagonal terms tend to 

zero.   
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